Preparation of 1,5-Disubstituted Pyrrolidin-2-ones

Alan R. Katritzky,* Shamal Mehta, Hai-Ying He, and Xilin Cui
Center for Heterocydic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200

Received February 16, 2000

Abstract

1,5-Disubstituted pyrrolidin-2-ones 18a-g, 19a-h, and 20a-f were synthesized in good to excellent yields via the nucleophilic substitution of 5-(benzotriazol-1-yl)-1-substituted-pyrrolidin-2-ones 9 with allylsilanes, organozinc reagents, and phosphorus compounds. Compounds 9 and 5-(benzotriazol-2-yl)-1-substituted-pyrrolidin-2-one isomers 10 are readily prepared in total 70-84\% yields from 2,5-dimethoxy-2,5-di hydrofuran (7), primary amines 8, and benzotriazole; $\mathbf{9}$ and $\mathbf{1 0}$ react identically with nucleophiles.

Introduction

Pyrrolidin-2-ones possess varied biological activity and have been used as pharmaceuticals. ${ }^{1,2}$ Consequently, there has been an ongoing interest in the synthesis of substituted pyrrolidin-2-ones. They are also effective intermediates for the synthesis of pyrrolidine alkaloids and γ-amino acids. ${ }^{3}$ Although the preparation of pyr-rolidin-2-ones has been much studied, ${ }^{4}$ it remains of considerable interest to explore new synthetic routes. We now report the novel synthesis of 1,5-disubstituted pyrrolidin-2-ones via benzotriazole methodology. ${ }^{5}$

Typical routes to 1,5-disubstituted pyrrolidin-2-ones can be classified as follows (Scheme 1): (A) treatment of carbinolamide (1) with $\mathrm{CF}_{3} \mathrm{COOH}$ gave a ring-closure product $4\left[R^{1}, R^{2}=-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)-\right.$ $\left.\mathrm{CH}_{2}-\right] ;$ (B) reductivering-contraction of pyridazin-3-ones 2 by Zn in AcOH formed 4 ($\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\operatorname{aryl}$); ${ }^{7}$ (C) ring-closure reactions of (i) dimethyl 3-oxohexanedioate (3) with primary amines to 4 ($\mathrm{R}^{1}=\mathrm{H}$ or alkyl, $\mathrm{R}^{2}=$ $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$), ${ }^{8}$ (ii) γ, δ-unsaturated hydrazide (5) with active MnO_{2} to $4\left(\mathrm{R}^{1}=\mathrm{NHCO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{CH}=\mathrm{CHCH}_{3}\right),{ }^{9}$ and (iii) γ-amino- α, β-unsaturated carboxylate 6 with magnesium in methanol to $4\left(R^{1}=H, R^{2}=\right.$ alkyl); ${ }^{10}$
(1) Harrison, T. Contemp. Org. Synth. 1995, 209.
(2) (a) Lin, N. H.; Carrera, G. M., J r.; Anderson, D. J. J . Med. Chem. 1994, 37, 3542. (b) Shih, N. Y.; Lupo, A. T., J r.; Aslanian, R.; Orlando, S.; Piwinski, J. J.; Green, M. J .; Ganguly, A. K.; Clark, M. A.; Tozzi, S.; Kreutner, W.; Hey, J. A. J. Med. Chem. 1995, 38, 1593. (c) Elliott, R. L.; Kopecka, H.; Lin, N. H.; He, Y.; Garvey, D. S. Synthesis 1995, 772.
(3) (a) Castelhano, A. L.; Krantz, A. J. Am. Chem. Soc. 1984, 106, 1877. (b) Hiemstra, H.; F ortgens, H.P.; Speckamp, W. N. Tetrahedron Lett. 1984, 25, 3115. (c) Huang, P. Q.; Wang, S. L.; Ye, J . L.; Ruan, Y. P.; Huang, Y. Q.; Zheng, H.; Gao, J. X. Tetrahedron 1998, 54, 12547 (d) Banziger, M.; McGarrity, J . F.; Meul, T. J. Org. Chem. 1993, 58, 4010. (e) Wei, Z. Y.; K naus, E. E. Synlett 1993, 295.
(4) (a) Polniaszek, R. P.; Belmont, S. E. J. Org. Chem. 1991, 56, 4868. (b) Meyers, A. I.; Seefeld, M. A.; Lefker, B. A.; Blake, J. F.; Williard, P. G. J. Am. Chem. Soc. 1998, 120, 7429. (c) Burgess, L. E.; Meyers, A. I. J. Org. Chem. 1992, 57, 1656. (d) Fehn, S.; Burger, K. Tetrahedron: Asymmetry 1997, 8, 2001. (e) Ma, D.; Ma, J.; Ding, W.; Dai, L. Tetrahedron: Asymmetry 1996, 7, 2365. (f) Burgess, L. E. M eyers, A. I. J. Am. Chem. Soc. 1991, 113, 9858. (g) Koot, W. J .; Ginkel, R.; K ranenburg, M.; Hiemstra, H. Tetrahedron Lett. 1991, 32, 401.
(5) Katritzky, A. R.; Lan, X.; Yang J. Z.; Denisko, O. V. Chem. Rev. 1998, 98, 409.
(6) Hart, D. J .; Tsai, Y. M. Tetrahedron Lett. 1981, 22, 1567.
(7) Brown, G. R.; F oubister, A. J.; Wright, B. J. Chem. Soc., Chem. Commun. 1984, 1373
(8) Celerier, J. P.; M arx, E.; Lhommet, G. J . Heterocyd. Chem. 1988, 25, 1275.
(9) Vedejs, E.; Meier, G. P. Tetrahedron Lett. 1979, 43, 4185.

Scheme 1

(D) reaction of 2,5-dimethoxy-2,5-dihydrofuran (7) and primary amines in refluxing acetic acid produced $4\left(R^{2}=\right.$ alkoxy) (Scheme 1). ${ }^{11,12}$

The reported methods generally introduce R^{2} (alkyl or aryl) group into the pyrrolidin-2-one ring directly from the starting material. Because of the strong $\mathrm{C}-\mathrm{C}$ bond, it is difficult to replace such R^{2} groups substituted by any other functionality. The weaker $\mathrm{C}-\mathrm{N}$ bond of N -substituted benzotriazoles should allow easy replacement of a Bt group via nucleophilic substitution, elimination, reduction, and cyclization, etc. ${ }^{5}$ We report herein the synthesis of 5-benzotriazolyl-1-substituted-pyrrolidin-2ones as versatile synthons and their novel reactions with allylsilanes, organozinc reagents, and phosphorus compounds to generate 1,5-disubstituted pyrrolidin-2-ones.

Results and Discussion

Preparation of 5-Benzotriazolyl-1-substituted-pyr-rolidin-2-ones 9 and 10. The reaction of 2,5-dimethoxy-
(10) Wei, Z. Y.; Knaus, E. E. Tetrahedron Lett. 1993, 34, 4439.
(11) Baussanne, I.; Chiaroni, A.; Husson, H. P.; Riche C.; Royer, J . Tetrahedron Lett. 1994, 35, 3931.
(12) Poli, G.; Baffoni, S. C.; Giambastiani, G.; Reginato, G. Tetrahedron 1998, 54, 10403.

Scheme 2

2,5-dihydrofuran (7), benzotriazole, and primary amine 8 in refluxing AcOH for 24 h gave 5-(benzotriazol-1-yl)-1-substituted-pyrrolidin-2-one 9 and 5-(benzotriazol-2-yl)-1-substituted-pyrrolidin-2-one 10, along with a minor byproduct 1-(1-substituted-1H-pyrrol-2-yl)-1H-1,2,3-benzotriazole 11 (Scheme 2). Bt^{1} isomer 9 and Bt^{2} isomer 10 were separated by column chromatography (silica gel), with the Bt^{1} isomer as the major constituent. Although some of the intermediates, e.g., $\mathbf{9 a}, \mathbf{c}, \mathbf{f}, \mathbf{g}, \mathbf{i}-\mathbf{k}$ and 10b,f-k, were not fully characterized possibly due to easy oxidation, they had clear ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, and their nucleophilic reactions with allylsilanes, organozinc reagents, and phosphorus compounds also afforded the fully characterized expected 1,5-disubstituted pyrrolidin2 -ones. The total yields for 9 and 10 are from good to excellent (Table 1). Methyl (2S)-2-amino-3-phenylpropanoate gave the expected intermediate $\mathbf{9 i}$, which indicates that easily obtained chiral amino acid esters could be used for the preparation of 1,5-disubstituted pyrroli-din-2-ones, although no expected product was isolated using (2S)-2-amino-3-phenylpropanoic acid. From chiral primary amines, the intermediates $\mathbf{9 h} \mathbf{- j}$ and $\mathbf{1 0 h} \mathbf{- j}$ were obtained with little chiral control at the 5-position as shown by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

The mechanism for the reaction of 7 and $R^{1} \mathrm{NH}_{2}$ was previously supposed to involve a competitive α - and γ-tautomerization of the transient 2-hydroxypyrrole (14), leading to the formation of 5-methoxypyrrolidin-2-one 16 and the conjugated pyrrol inone 17, respectively (Scheme 2). ${ }^{12}$ We believe, in our reaction, 2-hydroxypyrrole (14)

Table 1. Isolated Yields of 9-11

No.	R^{1}	9	10	11
a	Ph	70	a	10
b	PhCH_{2}	69	10	5
c	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}$	66	14	1
d	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	64	14	a
e	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}$	63	9	a
$\mathrm{f}^{\text {b }}$	$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2}$	$65^{\text {d }}$	16^{d}	a
g		74	9	a
h		67	15	2
i	$\mathrm{MeO}_{2} \mathrm{C}-\mathrm{CH}_{2} \mathrm{Ph}$	66	18	a
j^{c}		60	13	5
k		66	14	a

${ }^{a}$ No detectable amount of the product was isolated. ${ }^{\text {b }} \mathrm{HOCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{NH}_{2}$ was used, but $\mathbf{9 f}$ and $\mathbf{1 0 f}$ were obtained as esters due to the presence of $\mathrm{CH}_{3} \mathrm{COOH} .{ }^{\mathrm{c}}(\mathrm{S})-\mathrm{PhCH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{NH}_{2}$ was used, but $\mathbf{9 j}, \mathbf{1 0 j}$, and $\mathbf{1 1} \mathbf{j}$ were obtained as esters due to the presence of $\mathrm{CH}_{3} \mathrm{COOH} .{ }^{\text {d }}$ Yields estimated by ${ }^{1} \mathrm{H}$ NMR spectrum.
forms the same transient iminium cation 15, which immediately reacts with BtH to produce 5-benzotriazolyl-1-substituted-pyrrolidin-2-ones 9 and $\mathbf{1 0} .^{13}$ N o conjugated pyrrolinone $\mathbf{1 7}$ was detected in our reaction. In addition, the intramolecular condensation of the formyl group and the secondary amine in the transient $\mathbf{1 2}$ generates the intermediate iminium cation 13, which reacts with BtH and subsequently eliminates AcOH to afford the minor product α-(benzotriazol-1-yl)pyrrole 11.

Our previous work ${ }^{14}$ has demonstrated that (i) Bt^{1} and Bt^{2} groups are both good leaving groups and can be replaced by a nucleophile, and (ii) the mechanism of nucleophilic substitution of the Bt group from the adduct \mathbf{X} involves a planar iminium salt \mathbf{Y} as intermediate (Scheme 2). Therefore, the position at which the substituent is attached to the benzotriazole ring is not important. Thus, the mixture of intermediates $\mathbf{9}$ and $\mathbf{1 0}$ could be used for the subsequent nucleophilic substitutions with allylsilanes, organozinc reagents and phosphorus compounds.

Substitution of the Benzotriazole Group from 9 Using Allylsilanes. Initially, it was desired to confirm that there was no difference in the reactivity of the Bt^{1} isomer 9 and the Bt^{2} isomer 10. Hence, $\mathbf{9 b}\left(\mathrm{R}^{1}=\mathrm{PhCH}_{2}\right)$, $\mathbf{9 c}\left(\mathrm{R}^{1}=\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right)$, and 10b $\left(\mathrm{R}^{1}=\mathrm{PhCH}_{2}\right), \mathbf{1 0 c}\left(\mathrm{R}^{1}=\right.$ PhCH CH_{2}) were each separately used to react with allyl(trimethyl)silane in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. The yields of 18a, generated from $\mathbf{9 b}$ and 10b, were 90% and 87%, respectively, while the yields of 18b, generated from 9c and 10c, were 90% and 90%, respectively (Scheme 3). These examples prove that the Bt^{1} isomer and Bt^{2} isomer have no significant difference in their reactivities and

[^0]Scheme 3

${ }^{a}$ The yield in brackets was obtained from Bt^{2} isomer 10 .
lead to the same products in very similar yields. To compare and discuss different reactions, the same experiments were carried out by using the pure Bt^{1} isomer 9 as the starting material.
Treatment of intermediates $\mathbf{9 b - e}$,i with 4 equiv of trimethylallyl- or trimethyl(2-methylallyl)silane in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$ furnished 1 -substituted- 5 -allylpyrrolidin-2-ones 18a-f in 80-90\% yield and $\mathbf{1 8 g}$ in 49% yield (Scheme 3). The structures of 18a-g were confirmed by the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and high-resolution mass spectra (HRMS). The Bt group of $\mathbf{9}$ serves as a good leaving group and is easily eliminated in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ to generate iminium cation \mathbf{Y}, which is subsequently attacked by the nucleophile allylsilane to afford the 1 -substituted-5-allylpyrrolidin-2-ones 18a-g. Thus, by using benzotriazole methodology, an allyl group is easily introduced into the 5 -position of the pyrrolidin-2-one ring. However, $\mathbf{1 8 9}$ was obtained as diastereoisomers with no control by the N -(chiral)substituted group of the 5 -position chiral center.

Substitution of the Benzotriazole Group from 9 Using Organozinc Reagents. Grignard reagents cannot be directly used for the nucleophilic substitution of 9, since they react with carbonyl groups. Treatment of $\mathbf{9 b}$ and $\mathbf{9 e}$ with 3 equiv of organozinc reagent, generated by the reaction of the Grignard reagents and zinc chloride, in reflux THF gave 1,5-disubstituted pyrrolidin2 -ones 19a-g in moderate to excellent yields, while treatment of $\mathbf{9 e}$ with 3 equiv of 2 -bromomal onate and zinc powder in reflux THF afforded $\mathbf{1 9 h}$ in 67% yield (Scheme 4). The structures of 19a-h were determined by the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR as well as HRMS. The nucleophilic substitution of 9 with organozinc reagents thus allows the introduction of various substituents, e.g., propynyl, vinyl, propenyl, benzyl, cyclopentyl, pentyl, and ester, into the 5 -position of the pyrrolidin-2-one rings.

Substitution of the Benzotriazole Group from 9 by Phosphorus Nucleophiles. In 1997, Maury et al. reported that the cyano group of ($3 \mathrm{R}, 5 \mathrm{~S}, 8 \mathrm{aR}$)-3-phenyl-hexahydrooxazolo[3,2-a]pyridine-5-carbonitrile, generated from the double condensation of (R)-phenylglycinol and glutaral dehyde in the presence of potassium cyanide, could be replaced by a phosphono group using either

Scheme 4

Scheme 5

20	R^{1}	yield (\%)
a	$\mathrm{HOCH}_{2} \mathrm{CH}_{2}$	49
b	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	79
C		78
d	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}$	76
e		85
f		67

triethyl- or trimethyl phosphite. ${ }^{15}$ In our reaction, avoiding the use of potassium cyanide, the treatment of $\mathbf{9 d}$ g,i,j in dry THF with triethyl phosphite in the presence of 1 equiv of ZnBr_{2} produced diethyl 1-substituted-5-oxo-2-pyrrolidinylphosphonates 20a-f in moderate to good yields (Scheme 5). The Bt groups of $\mathbf{9 d} \mathbf{d} \mathbf{- \mathbf { g } , \mathbf { i } , \mathbf { j } \text { are readily }}$ replaced with a phosphono group. The intermediates 9 f and $\mathbf{9 j}$, as esters, were hydrolyzed during the reaction; thus, 20a and 20e were obtained as primary alcohols. The structures of $\mathbf{2 0 a - f}$ are determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and the ${ }^{13} \mathrm{C}$ NMR spectra show that phosphorus has the coupling splitting effect on some carbon peaks. Again, a chiral group at 1-position $\left[\mathrm{R}^{1}=(\mathrm{S})-\mathrm{PhCH}\left(\mathrm{CH}_{2}{ }^{-}\right.\right.$ OH) or (S) $-\mathrm{PhCH}_{2} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)$] did not control the chiral center at 5 -position, as $\mathbf{2 0}$ e and $\mathbf{2 0 f}$ were obtained as diastereoisomers.
In conclusion, we have described a simple and novel route to 1,5 -disubstituted pyrrolidin-2-ones via the benzotriazole methodology. Several advantages for this reaction include the following: (1) the intermediates $9 \mathbf{a}-\mathbf{k}$ and 10a-k could be obtained in one step; (2) the total yield for Bt^{1} and Bt^{2} isomers is from good to excellent

[^1](70\% to 84\%) and there is no difference for the reactivity of Bt^{1} and Bt^{2} isomer; (3) the compounds $\mathbf{9 a - k}$ and 10a\mathbf{k}, as versatile synthons, can be further transformed to new 1,5-disubstituted pyrrolidin-2-ones via the nucleophilic substitution of benzotriazole group with allylsilanes, organozinc reagents and phosphorus compounds.

Experimental Section

General Procedure for the Preparation of 5-(Benzo-triazol-1-yl)-1-substituted-pyrrolidin-2-ones 9 and 5-(Ben-zotriazol-2-yl)-1-substituted-pyrrolidin-2-ones 10. An appropriate primary amine (25 mmol), 2,5-dimethoxy-2,5dihydrofuran (7) ($3.2 \mathrm{~g}, 25 \mathrm{mmol}$), and 1H-1,2,3-benzotriazole ($6.5 \mathrm{~g}, 55 \mathrm{mmol}$) were dissolved in acetic acid (25 mL) and refluxed under N_{2} for 24 h . After the reaction mixture was cooled, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added. The organic layer was washed with 2 M NaOH and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuo, and the residue was separated by flash chromatography (silica gel) with hexanes-EtOAc (7:3) as eluent to give5-(benzotriazol-1-yl)-1-substituted-pyrrolidin-2-ones 9 and 5-(benzotriazol-2-yl)-1-substituted-pyrrolidin-2ones 10, together with a byproduct 1-(1-substituted-1H-pyrrol-2-yl)-1H-1,2,3-benzotriazole 11.

5-(1H-1,2,3-Benzotriazol-1-yl)-1-benzylpyrrolidin-2-one (9b): brown powder; mp $169.5-170.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.40-$ $2.55(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.85(\mathrm{~m}, 2 \mathrm{H}), 3.00-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.53,4.91$ ($\mathrm{AB}, \mathrm{J}=15.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.34(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.06(\mathrm{~m}$, $2 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.49(\mathrm{~m}, 2 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 25.2,29.4,44.3,71.4,109.0,120.4,124.3$, 127.9, 128.0, 128.3, 128.6, 131.4, 134.8, 146.3, 174.2. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 69.85; H, 5.52; $\mathrm{N}, 19.16$. Found: C, 69.63; H, 5.66; N, 18.93 .

5-(1H-1,2,3-Benzotriazol-1-yl)-1-[(1S)-1-phenylethyl]-pyrrolidin-2-one (9h). Obtained as diastereoisomers in the ratio 57:43 (minor isomer in the parentheses): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 0.79(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.26-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.53-$ $2.77(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.30(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.65(\mathrm{~m}, 1 \mathrm{H}), 6.05-$ $6.15(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.53(\mathrm{~m}, 5 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 15.8$ (15.1), 26.8 (27.0), 29.7 (29.4), 50.2 (50.5), 69.9 (69.6), 109.3 (109.1), 120.4 (120.1), 124.3 (124.2), 127.6 (127.5), 127.8 (127.6), 128.2 (127.9), 128.9, 131.3, 138.5, 146.1 (147.2), 174.9 (175.2). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 70.57 ; \mathrm{H}, 5.92 ; \mathrm{N}, 18.29$. Found: C, 70.23; H, 6.02; N, 18.46.

Methyl (2S)-2-[2-(1H-1,2,3-Benzotriazol-1-yl)-5-oxo-1-pyrrolidinyl]-3-phenylpropanoate (9i). Obtained as diastereoisomers in the ratio 59:41 (minor isomer in the parentheses): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 2.34-2.90(\mathrm{~m}, 3 \mathrm{H}), 2.93-3.15$ $(\mathrm{m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})[3.41(\mathrm{~s}, 3 \mathrm{H})]$, $4.79-4.87(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H})[6.30(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}, 1 \mathrm{H})], 7.00-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, 1H); ${ }^{13}$ C NMR $\delta 26.1$ (25.2), 28.7 (28.6), 34.1 (32.9), 52.3 (51.5), 55.9 (54.6), 78.3 (76.3), 103.4, 110.0 (112.8), 117.9 (117.8), 119.4 (120.2), 123.5 (121.9), 126.4 (126.2), 126.8 (126.5), 127.9 (127.8), 128.3 (128.2), 135.3 (132.2), 136.1 (135.8), 143.8 (145.4), 169.7 (169.1), 175.2 (175.3).
(2S)-2-[2-(1H-1,2,3-Benzotriazol-1-yl)-5-oxo-1-pyrroli-dinyl]-2-phenylethyl Acetate (9j). Obtained as diastereoisomers in the ratio 54:46 (minor isomer in the parentheses): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.95(\mathrm{~s}, 3 \mathrm{H})$ [1.75 ($\mathrm{s}, 3 \mathrm{H}$)], 2.25-2.45 (m, $1 \mathrm{H}), 2.60-2.87(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.32(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.18(\mathrm{~m}, 1 \mathrm{H})$ [3.70-3.83(m, 1H)], 4.48-4.57 (m, 1H) [5.05-5.18 (m, 1H)], $5.20-5.31(\mathrm{~m}, 1 \mathrm{H})[5.48-5.60(\mathrm{~m}, 1 \mathrm{H})], 6.67(\mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H})$ [6.25 (d, J $=6.4 \mathrm{~Hz}, 1 \mathrm{H})$], 6.80-7.05 (m, 2H), 7.10-7.55 (m, $6 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})[8.08(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})] ;{ }^{13} \mathrm{C}$ NMR $\delta 20.6$ (20.3), 25.8 (26.3), 29.6 (29.5), 54.6 (54.2), 61.8 (61.3), 70.7 (71.0), 109.3 (109.2), 120.1 (120.5), 123.9, 124.3, 126.9 (127.4), 127.7, $127.8,128.0$ (128.7), 129.0, 130.8 (130.9), 134.2 (134.6), 146.3 (146.1), 170.0 (170.6), 175.2 (175.1).

5-(2H-1,2,3-Benzotriazol-2-yl)-1-benzylpyrrolidin-2-one (10b): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 2.50-2.67$ (m, 3H), 3.08-3.25 (m, $1 \mathrm{H}), 3.60,4.94(\mathrm{AB}, \mathrm{J}=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$,

1H), 7.20-7.29 (m, 5H), 7.40-7.43 (m, 2H), 7.80-7.90 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\delta 25.9,29.0,44.4,77.8,118.4,126.9,127.8,128.5$, 128.6, 135.3, 144.4, 175.1.

5-(2H-1,2,3-Benzotriazol-2-yl)-1-[(1S)-1-phenylethyl]-pyrrolidin-2-one (10h). Obtained as diastereoisomers in the ratio 53:47 (minor isomer in the parentheses): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 0.79(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.13-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.37-$ $2.63(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.35(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.65(\mathrm{~m}, 1 \mathrm{H}), 6.09-$ $6.15(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.51(\mathrm{~m}, 7 \mathrm{H}), 7.83-7.95(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 15.3$ (14.6), 27.3 (27.1), 29.1 (28.6), 50.1 (50.8), 76.5 (76.1), 118.3 (118.2), 126.7 (126.5), 127.4 (127.2), 127.9, 128.7, 138.9, 144.2 (144.7), 175.3 (175.0).

Methyl (2S)-2-[2-(2H-1,2,3-Benzotriazol-2-yl)-5-oxo-1-pyrrolidinyl]-3-phenylpropanoate (10i). Obtained as diastereoisomers in the ratio 54:46 (minor isomer in the parentheses): brown oil; ${ }^{1} \mathrm{H}$ NMR $\delta 2.30-2.67(\mathrm{~m}, 3 \mathrm{H}), 2.90-3.19$ $(\mathrm{m}, 2 \mathrm{H}), 3.33(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H})[3.66(\mathrm{~s}, 3 \mathrm{H})]$, 4.79-4.87 (m, 1H) [4.34-4.41 (m, 1H)], $5.98(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $1 \mathrm{H})$ [6.56 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H})], 6.92-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.25$ (m, 3H), $7.25-7.51(\mathrm{~m}, 2 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 25.1$ (24.2), 28.7 (30.3), 34.1 (33.2), 51.6 (52.9), 55.9 (54.9), 72.0 (70.9), 109.1, 119.6 (2), 123.8 (123.7), 126.4 (126.2), 127.4 (126.5), 127.8 (127.5), 127.9 (2), 128.1 (128.0), 128.6, 131.1 (130.6), 136.1 (135.6), 145.7 (145.6), 169.2 (168.8), 174.5 (174.2).
(2S)-2-[2-(2H-1,2,3-Benzotriazol-2-yl)-5-oxo-1-pyrroli-dinyl]-2-phenylethyl Acetate (10j). Obtained as diastereoisomers in the ratio 52:48 (minor isomer in the parentheses): yellow oil; ${ }^{1} \mathrm{H}$ NMR 1.66 (s,3H) [1.87 (s, 3H)], 2.35-2.75 (m, $3 \mathrm{H}), 3.17-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.62(\mathrm{~m}, 1 \mathrm{H})$ [5.01-5.17 (m, 1H)], 5.24-5.40 (m, 1H) [5.55-5.67 (m, 1H)], $6.22(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H})[6.46(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})], 6.80-6.95$ (m, 1H) , 7.01-7.15 (m, 1H), 7.24-7.51 (m, 5H), 7.60-7.75 (m, 1H), 7.81-7.95 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta 20.2$ (20.5), 27.3 (26.7), 29.3 (29.4), 54.9 (53.9), 61.9 (61.5), 77.4 (76.8), 118.3 (118.1), 126.6, 127.1, 127.3, 127.6, 127.7, 127.9, 128.6, 128.9, 134.7, 134.9, 144.3 (144.0), 170.6 (171.6), 176.1 (175.9).

General Procedure for the Reaction of 9 with Allylsilanes. To an ice-cold solution of $9(0.7 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) under N_{2} was added an appropriate allylsilane (2.8 mmol) and the mixture stirred for $10 \mathrm{~min} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(4.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 24 h . Then 2 M NaOH (10 mL) was added to quench the reaction. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvents in vacuo, the residue was separated by column chromatography (silica gel) with hexanes/EtOAc (3:2) as eluent to give 18.

5-Allyl-1-benzyl-pyrrolidin-2-one (18a): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.72-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.30(\mathrm{~m}$, $1 \mathrm{H}), 2.36-2.65(\mathrm{~m}, 3 \mathrm{H}), 3.51-3.56(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~d}, \mathrm{~J}=14.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.02-5.17 (m, 3H), 5.60-5.73 (m, 1H), 7.20-7.48 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR δ 23.1, 30.0, 37.0, 44.1, 56.2, 118.7, 127.4, 127.8, 128.5, 132.4, 136.3, 175.4; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO} 216.1388$ ($M+1$), found 216.1390.

5-Allyl-1-phenethylpyrrolidin-2-one (18b): yellow oil; ${ }^{1 H}$ NMR $\delta 1.65-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.53(\mathrm{~m}, 5 \mathrm{H}), 2.75-3.07(\mathrm{~m}$, $2 \mathrm{H}), 3.10-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.85-4.05(\mathrm{~m}, 1 \mathrm{H})$, $5.05-5.30(\mathrm{~m}, 2 \mathrm{H}), 5.55-5.80(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.45(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 23.4,30.0,33.7,37.4,41.9,57.2,118.7,126.4,128.4$, 128.6, 132.7, 138.8, 175.0; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO} 230.1545$ $(M+1)$, found 230.1546 .

5-(2-Methyl-2-propenyl)-1-phenethylpyrrolidin-2-one (18c): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.83-2.10(\mathrm{~m}, 2 \mathrm{H})$, 2.25-2.61 (m, 4H), 2.75-3.00 (m, 2H), 3.12-3.30 (m, 1H), 3.45-3.60 (m, 1H), 3.87-4.05 (m, 1H), 4.71 (s, 1H), $4.83(\mathrm{~s}$, 1H), 7.10-7.50 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\delta 22.4,23.8,29.8,33.9,41.4$, 42.1, 56.4, 113.6, 126.4, 128.5, 128.6, 138.7, 140.9, 175.4; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO} 244.1701(\mathrm{M}+1)$, found 244.1688.
1-(4-Methoxybenzyl)-5-(2-methyl-2-propenyl)pyrrolidin-2-one (18d): yellow oil; 1H NMR $\delta 1.64$ (s, 3H), 1.70-1.80 (m, $1 \mathrm{H}), 1.91-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.60(\mathrm{~m}, 3 \mathrm{H}), 3.50-3.60(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.94,4.93(\mathrm{AB}, \mathrm{J}=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=$ $14.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, 2H); ${ }^{13} \mathrm{C}$ NMR $\delta 22.9,24.1,30.3,41.7,44.0,55.5,55.6,113.9$,
114.3, 114.4, 118.8, 127.3, 129.2, 129.7, 130.4, 141.7, 159.4, 175.3; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2} 260.1651(\mathrm{M}+1)$, found 260.1659.

5-Allyl-1-(4-methoxyphenethyl)-pyrrolidin-2-one (18e): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.61-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.10(\mathrm{~m}$, 1H), 2.10-2.25 (m, 1H), 2.25-2.47 (m, 3H), 2.65-2.90(m, 2H), $3.00-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.75-4.00$ $(\mathrm{m}, 1 \mathrm{H}), 5.05-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.60-5.77(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR 23.2, 29.9, $32.6,37.3,41.9,55.0,57.0,113.7,118.5,129.4,130.6,132.6$, 158.0, 174.7; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2} 260.1651(\mathrm{M}+1)$, found 260.1676 .

1-(4-Methoxyphenethyl)-5-(2-methyl-2-propenyl)pyr-rolidin-2-one (18f): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.68$ (s, 3H), 1.68$1.80(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.70-$ $2.90(\mathrm{~m}, 2 \mathrm{H}), 3.00-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}$, $3 \mathrm{H}), 3.80-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 22.4,23.8,29.7,33.0,41.5,42.0,56.0,56.1,113.4$, 113.7, 113.9, 129.5, 129.6, 141.1, 158.1, 174.7; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2} 274.1807(\mathrm{M}+1)$, found 274.1802.

Methyl (2S)-2-(2-allyl-5-oxo-1-pyrrolidinyl)-3-phenylpropanoate (18g): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.50-1.90(\mathrm{~m}, 2 \mathrm{H})$, $2.00-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.70-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 4.05-4.20(\mathrm{~m}, 1 \mathrm{H}), 5.00-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.40-5.80(\mathrm{~m}$, 1H), 7.10-7.50 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\delta 23.7,29.5,34.8,37.8,37.9$, 52.4, 57.7, 59.6, 118.3, 126.7, 128.4, 129.1, 133.2, 170.3, 174.9; HRMS cal cd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3} 288.1600(\mathrm{M}+1)$, found 288.1588.

General Procedure for the Reaction of 9 with Organozinc Reagents. To an ice-cold solution of Grignard reagent $(8.0 \mathrm{mmol})$ in dry THF (10 mL) under N_{2}, was added ZnCl_{2} (8.5 mmol) and the solution allowed to warm to room temperature over 0.5 h . A solution of $\mathbf{9 b}$ or $\mathbf{9 e}(2.7 \mathrm{mmol})$ in dry THF (10 mL) was then added, and the reaction mixture was refluxed for 48 h . After cool ing, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and 2 M NaOH (10 mL) were added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvents in vacuo, the residue was separated by column chromatography (silica gel) with hexanes/EtOAc (3:2) as eluent to give 19a-g.

1-Benzyl-5-(1-propynyl)pyrrolidin-2-one (19a): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.84(\mathrm{~s}, 3 \mathrm{H}), 2.00-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.35-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.71(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.09(\mathrm{~m}, 2 \mathrm{H})$, $5.04(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 26.2$, 30.0, 44.3, 48.6, 81.6, 127.4, 128.4, 128.5, 136.4, 174.0; HRMS cal cd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}$ 214.1232 ($\mathrm{M}+1$), found 214.1215.

1-(4-Methoxyphenethyl)-5-(1-propynyl)pyrrolidin-2one (19b): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.83$ (s, 3H), 1.90-2.10 (m, $1 \mathrm{H}), 2.15-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.55(\mathrm{~m}, 1 \mathrm{H})$, 2.70-2.90 (m, 2H), 3.20-3.35 (m, 1H), 3.77 (s, 3H), 3.80-3.90 $(\mathrm{m}, 1 \mathrm{H}), 4.05-4.15(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}$, $\mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 3.5,26.8,30.1,32.8,42.5,49.9$, 55.3, 76.9, 81.3, 114.0, 129.7, 130.9, 158.2, 174.2; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2} 258.1494(\mathrm{M}+1)$, found 258.1490.

1-(4-Methoxyphenethyl)-5-vinyl-pyrrolidin-2-one (19c): colorless crystalline; $\mathrm{mp} 63-64{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3} /$ hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 1.60-1.80(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.50$ $(\mathrm{m}, 2 \mathrm{H}), 2.60-2.90(\mathrm{~m}, 2 \mathrm{H}), 3.00-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.70-3.90(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.50-5.70(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}$, $\mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.5,30.0,32.7,42.2,55.1,61.7$, 113.7, 117.9, 129.7, 131.0, 137.8, 158.1, 174.8. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$: $\mathrm{N}, 5.71$. Found: $\mathrm{N}, 5.82$.

1-(4-Methoxyphenethyl)-5-(1-propenyl)pyrrolidin-2one (19d): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.50-1.90$ (m, 4H), 2.00$2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.85(\mathrm{~m}, 2 \mathrm{H}), 3.00-$ $3.20(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.20-4.40(\mathrm{~m}$, 1H), 5.10-5.30 (m, 1H), 5.50-5.80 (m, 1H), 6.82 (d, J = 8.7 $\mathrm{Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.8,25.6,30.3$, $32.8,42.4,54.8,55.1,113.7,128.0,129.5,130.1,130.9,158.0$, 174.7; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2} 260.1651(\mathrm{M}+1)$, found 260.1643.

5-Benzyl-1-(4-methoxyphenethyl)pyrrolidin-2-one (19e): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.60-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.90$ (m, $1 \mathrm{H}), 1.90-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.60(\mathrm{~m}, 1 \mathrm{H})$,
2.70-3.00 (m, 2H), 3.00-3.30 (m, 1H), 3.50-3.65 (m, 1H), 3.76 $(\mathrm{s}, 3 \mathrm{H}), 3.85-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.50(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 23.6,24.6,28.6,29.6,32.9,33.0,39.2,42.0,42.1,55.0,58.8$, $68.1,89.0,113.7,126.5,127.5,127.7,128.4,129.0,129.4,129.5$, 130.7, 130.8, 136.8, 158.0, 174.8; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}$ $310.1807(M+1)$, found 310.1806 .
5-Cyclopentyl-1-(4-methoxyphenethyl)pyrrolidin-2one (19f): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.40-1.80(\mathrm{~m}, 8 \mathrm{H})$, $1.80-$ $2.00(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.70-$ $2.90(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.80-3.90(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 23.1,25.9$, $28.7,32.3,33.1,33.2,42.1,55.1,78.6,88.5,113.8,129.5,131.0$, 158.1, 174.6; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2}$ 288.1964, found 288.1961.

1-(4-Methoxyphenethyl)-5-pentylpyrrolidin-2-one (19g): colorless oil; ${ }^{1} \mathrm{H}$ NMR $\delta 0.90$ (br s, 3H), 1.22-1.38 (m, 4H), $1.50-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 1 \mathrm{H})$, 2.40-2.60 (m, 1H), 2.70-2.90 (m, 2H), 3.20-3.40 (m, 3H), 3.60-3.80 (m, 1H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 4.67-4.69(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}$, $\mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.9$, 22.3, 24.6, 28.3, 28.9, 29.3, 33.1, 42.1, 55.1, 65.9, 89.5, 113.8, 129.5, 131.0, 158.1, 174.8; HRMS cal cd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2} 290.2120$ $(M+1)$, found 290.2101 .

To freshly cleaned and dried Zn powder ($1.56 \mathrm{~g}, 23.9 \mathrm{mmol}$) in THF (20 mL) was added diethyl 2-bromomal onate (0.75 g , 3.1 mmol) and the mixture allowed to reflux at $80^{\circ} \mathrm{C}$ for 1 h . A solution of $9 \mathbf{e}(0.35 \mathrm{~g}, 1.04 \mathrm{mmol})$ in THF (20 mL) was then added dropwise over a period of 10 min . The solution was allowed to reflux for 48 h , cooled, and quenched by 2 M NaOH $(20 \mathrm{~mL})$. The mixture was extracted with three portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvents in vacuo, the residue was separated by column chromatography (silica gel) with hexanes/EtOAc (3:1) as eluent to give $\mathbf{1 9 h}$.

Diethyl 2-(5-oxo-1-phenethyl-2-pyrrolidinyl)malonate (19h): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.20-1.39$ (m, 6H), 2.10-2.48 $(\mathrm{m}, 4 \mathrm{H}), 2.70-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.86-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~d}, \mathrm{~J}=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.30(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.40$ ($\mathrm{m}, 5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR δ 13.9, 21.5, 29.4, 33.3, 42.2, 53.5, 56.8, 61.7, $61.8,126.4,128.4,128.6,138.4,166.9,167.0,175.1$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{5}: \mathrm{N}, 4.03$. Found: $\mathrm{N}, 4.50$.
General Procedure for the Reaction of 9 with Phosphorus Compounds. To a solution of $9(1.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) under N_{2} at $0^{\circ} \mathrm{C}$ was added triethyl phosphite $(0.36 \mathrm{~mL}, 2.1 \mathrm{mmol})$ and $\mathrm{ZnBr}_{2}(0.30 \mathrm{~g}, 1.3 \mathrm{mmol})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 h and then quenched with $2 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent in vacuo, the residue was separated by column chromatography (silica gel) with hexanes/EtOAc (4:1) as eluent to afford 20.
Diethyl 1-(2-hydroxyethyl)-5-oxo-2-pyrrolidinylphosphonate (20a): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.30-1.50(\mathrm{~m}, 6 \mathrm{H}), 2.05$ $(\mathrm{s}, 2 \mathrm{H}), 2.20-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.60(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.60(\mathrm{~m}$, 1H), 4.00-4.30 (m, 7H), 4.30-4.50 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta 16.3$ $(J=5.4 \mathrm{~Hz}), 20.4(J=32.3 \mathrm{~Hz}), 29.3,40.9,52.9,55.1,60.9$, $62.3(j=7.1 \mathrm{~Hz}), 62.9(\mathrm{~J}=7.0 \mathrm{~Hz}), 170.6,175.4(\mathrm{j}=3.3 \mathrm{~Hz})$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{P} 266.1157(\mathrm{M}+1)$, found 266.1162.

Diethyl 1-(4-methoxybenzyl)-5-oxo-2-pyrrolidinylphosphonate (20b): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.35$ (t, J $=8.1 \mathrm{~Hz}$, $6 \mathrm{H}), 2.00-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.70(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.30(\mathrm{~m}, 5 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 16.2(\mathrm{~J}=5.5 \mathrm{~Hz}), 16.3(\mathrm{~J}=5.3 \mathrm{~Hz}), 29.5,44.4$, $51.2,53.4,55.0,55.3,62.2(\mathrm{~J}=7.3 \mathrm{~Hz}), 62.9(\mathrm{~J}=7.1 \mathrm{~Hz})$, 113.8, 127.7, 129.5, 158.9, $174.9(\mathrm{~J}=2.9 \mathrm{~Hz}$); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{P} 342.1470(\mathrm{M}+1)$, found 342.1470 .
Diethyl 1-(3,4-dimethoxybenzyl)-5-oxo-2-pyrrolidinylphosphonate (20c): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.36$ ($\mathrm{t}, \mathrm{J}=6.9$ $\mathrm{Hz}, 6 \mathrm{H}), 2.00-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.77(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~d}, \mathrm{~J}=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.86(\mathrm{~s}, 6 \mathrm{H}), 4.10-4.30(\mathrm{~m}, 5 \mathrm{H}), 5.16(\mathrm{~d}, \mathrm{~J}=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80-6.88(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 16.2(J=5.5 \mathrm{~Hz}), 16.3$ $(J=5.2 \mathrm{~Hz}), 20.1,29.7,44.9,51.3,53.5,55.7(\mathrm{~J}=8.2 \mathrm{~Hz})$,
$62.5(\mathrm{~J}=7.3 \mathrm{~Hz}), 63.1(\mathrm{~J}=7.2 \mathrm{~Hz}), 110.8(\mathrm{~J}=38.7 \mathrm{~Hz}), 120.7$, 128.0, $148.5(\mathrm{~J}=38.7 \mathrm{~Hz}$), 175.1 ($\mathrm{J}=2.9 \mathrm{~Hz}$); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{P} 372.1576(\mathrm{M}+1)$, found 372.1597 .

Diethyl 1-(4-methoxyphenethyl)-5-oxo-2-pyrrolidinylphosphonate (20d): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.33(\mathrm{t}, \mathrm{J}=6.9$ $\mathrm{Hz}, 6 \mathrm{H}), 2.00-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.40-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.85$ $(\mathrm{m}, 1 \mathrm{H}), 2.85-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.60(\mathrm{~m}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.25(\mathrm{~m}, 4 \mathrm{H}), 6.82$ (d, J = 8.7 Hz, 2H), $7.10(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} N M R \delta 16.3$ $(J=5.6 \mathrm{~Hz}), 16.4(J=5.2 \mathrm{~Hz}), 20.3,29.5,32.3,43.5,53.2$, $55.0,55.3,62.0(\mathrm{~J}=7.0 \mathrm{~Hz}), 62.7(\mathrm{~J}=7.3 \mathrm{~Hz}), 113.7,129.5$, 130.4, 158.0, $174.9(\mathrm{~J}=3.0 \mathrm{~Hz})$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{P}$ $356.1627(M+1)$, found 356.1627 .

Diethyl 1-[(1S)-2-hydroxy-1-phenylethyl]-5-oxo-2-pyrrolidinylphosphonate (20e): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.30-$ $1.40(\mathrm{~m}, 6 \mathrm{H}), 2.00-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.70-$ $3.10(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.60(\mathrm{~m}, 3 \mathrm{H}), 4.00-4.30(\mathrm{~m}, 4 \mathrm{H}), 7.20-$ $7.45(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 16.2(\mathrm{~J}=5.2 \mathrm{~Hz}), 16.3(\mathrm{~J}=5.1 \mathrm{~Hz})$, 20.2, 29.5, 33.1, 43.3, 50.1, 53.1, 55.3, $62.1(\mathrm{~J}=7.3 \mathrm{~Hz}), 62.8$ $(\mathrm{J}=7.0 \mathrm{~Hz}), 126.3,128.3,128.5,138.4(\mathrm{~J}=4.1 \mathrm{~Hz}), 175.0$
$(J=3.1 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{P}: \mathrm{C}, 56.30, \mathrm{H}, 7.09$, N, 4.10. Found: C, 55.83, H, 7.28, N, 4.49.

Methyl (2S)-2-[2-(diethoxyphosphoryl)-5-oxo-1-pyrroli-dinyl]-3-phenylpropanoate (20f): yellow oil; ${ }^{1} \mathrm{H}$ NMR δ $1.20-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.70-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.60(\mathrm{~m}, 1 \mathrm{H})$, $3.25-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.95-4.30$ $(\mathrm{m}, 6 \mathrm{H}), 4.90-5.10(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{313} \mathrm{C}$ NMR δ $16.2(J=6.6 \mathrm{~Hz}), 16.4(\mathrm{~J}=5.6 \mathrm{~Hz}), 20.6(\mathrm{~J}=2.6 \mathrm{~Hz}), 24.8$ $(J=5.3 \mathrm{~Hz}), 29.5(J=12.5 \mathrm{~Hz}), 33.8,34.6,52.2,52.6,54.8$, $55.0,56.3,57.2,59.1,62.0(\mathrm{~J}=7.1 \mathrm{~Hz}), 62.8(\mathrm{~J}=4.8 \mathrm{~Hz})$, $63.1(J=4.6 \mathrm{~Hz}), 68.2,70.4,126.4,126.8,128.3,128.5,128.6$, $129.0,137.1,137.8,169.6,170.3,174.8,176.7(\mathrm{~J}=5.0 \mathrm{~Hz})$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{P} 384.1576(\mathrm{M}+1)$, found 384.1574.

Supporting Information Available: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and CHN analyses or HRMS for compounds $9 \mathrm{a}, \mathbf{c}-\mathbf{g}, \mathbf{k}$, $\mathbf{1 0 a}, \mathbf{c}-\mathbf{g}, \mathbf{k}$, and 11a-c,h,j . This material is available free of charge via the Internet at http://pubs.acs.org.

J O000219W

[^0]: (13) (a) Katritzky, A. R.; Yannakopoulou, K.; Lue, P.; Rasala, D.; Urogdi, L. J . Chem. Soc., Perkin Trans. 1 1989, 225. (b) Katritzky, A. R.; Chang, H. X.; Wu, J . Synthesis 1994, 907.
 (14) (a) Katritzky, A. R.; Fan, W. Q. J. Org. Chem. 1990, 55, 3205. (b) K atritzky, A. R.; Rachwal, S.; Hitchings, G. J . Tetrahedron 1991, 47, 2683. (c) Katritzky, A. R.; Qiu, G.; Yang, B.; Steel, P. J. J. Org. Chem. 1998, 63, 6699.

[^1]: (15) Maury, C.; Wang, Q.; Gharbaoui, T.; Chiadmi, M.; Tomas, A.; Royer, J.; Husson, H. Tetrahedron 1997, 53, 3627.

